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If the scattered wave attenuates along the�x-direction with the
factor�, thend can be replaced asd = e���xz�s. When high-order
ABC’s are used, approximate values of�i and�i are adequate. In
fact, one may select these values in a range according to the incident
angles and attenuation fact of the wave in the frequency band of
interest.

III. N UMERICAL RESULTS

In this paper, we give the reflection coefficient caused by a
third-order ABC, which is developed when it is used to analyze
a rectangular waveguide WR-28. The results are shown in Fig. 1,
together with the results obtained when we use the first-order Mur’s
ABC and 16-layer PML as comparison. The parameters of the ABC
were selected as�1 = 1:2c, � = 1:4c, and�3 = 1:6c. The type of
PML used was PML(16, P, 0.001).

The ABC has been used to calculate theS-parameters of a
rectangular dielectric post in a rectangular waveguide WR-28. The
cross section of the post is 4 mm� 2 mm, and the dielectric
constant�r is 8.2, as shown in Fig. 2(a). Resonance occurred near
the frequencyf = 34 GHz, and very strong high-order modes were
excited. In this case, if the truncated plane is set very close to the
discontinuity, the ABC should absorb both the dominant and high-
order modes, which is demonstrated in [8]. A fifth-order ABC was
applied where the phase velocities were selected as�1 = 1:2c,
�2 = 1:4c, �3 = 1:6c, �4 � c, �5 � c, and the attenuation factors
were selected as�1�x = 0, �2�x = 0, �3�x = 0, �4�x = 0:02,
�5�x = 0:05. Better results were obtained when the distance between
the ABC and discontinuity is 3 mm, as shown in Fig. 2(b)–(d).
Since the ordinary PML cannot absorb the high-order (cutoff) modes
adequately, it fails to obtain correct results unless the distance is much
larger. Our ABC can obtain reasonable results even if the distance is
very small, and the computational memory and time can be greatly
saved. Since the derivation is not limited two-dimensionally, the ABC
can be applied in a three-dimensional (3-D) problems.

IV. CONCLUSION

In this paper, we use transfer functions to construct ABC’s for
the first time. Recurrence formulas for the transfer functions and
coefficients of the final FD schemes of the ABC’s are developed.
It is quite simple and convenient to apply the ABC’s in the FDTD
iteration. A lot of computational time and memory can be saved with
the ABC’s. Numerical results show the good absorbing performance
of the ABC in practical problems.
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Edge-Element Formulation of
Three-Dimensional Structures

Jilin Tan, Guangwen Pan, and Barry K. Gilbert

Abstract—A three-dimensional (3-D) asymmetrical functional is devel-
oped and implemented as a hybrid-vector edge-element method. The
equivalent frequency-dependent circuit parameters are then extracted
from the field solutions. Laboratory measurements and data comparison
with previous published results strongly support the newly developed
theoretical work.

Index Terms—Edge element, functional.

I. INTRODUCTION

In this paper, we have developed a new functional for general
three-dimensional (3-D) guided-wave structures, which need not have
completely closed metallic walls. We shall then derive the termination
conditions at the planes of incidence and transmittance. Utilizing
prior information of the eigenmodes resulting from the evaluation
of the two-and-one-half-dimensional edge-element solver [1], the
3-D field solutions are obtained. The frequency-dependent circuit
parameters (such asL, C, R, and G) are converted according to
relevant equivalent circuits of the structures.

II. BASIC THEORY

We begin with the vector-wave-propagation equation

r�
1

�r
r� ~E �~~�rk

2

0 �
~E = �j!� ~J in V: (1)

The boundary conditions for (1) are

n̂� ~E = ~P ; onS1
1

�r
n̂�r� ~E + 
vn̂� n̂� ~E = ~V ; onS2:

(2)

In the previous equations,S1 is the surface where the boundary
condition of the first kind applies,S2 is the surface where
the boundary condition of the third kind applies, and
v =
jk0 (�rc � j(�=!�0)=�rc); as defined in [1]. In the application
of this theory to transmission-line structures and their discontinuities,
the field component in the signal-propagation direction is generally
nonzero, and the aforementioned boundary conditions are insufficient.
On both the incident and transmitted planes, the longitudinal
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component needs to be treated carefully [2]. Without losing
generality, we will employ a typical via structure as an example.
On the incident planeO1 and transmitted planeO2, the suitable
termination condition is found to be

n̂�r� ~E + 
pn̂� n̂� ~E +
rtEn


p
= ~U: (3)

Generally, the functional is no longer symmetric because of (3).
Furthermore, to be consistent with the treatment in the two-and-one-
half-dimensional case, and with the expressions that we proposed in
[1], the adjoint field should be the field which is incident upon plane
O2 and transmitted throughO1. This adjoint system satisfies

r�
1

�r
r� ~E

y �~~�rk
2
0 � ~E

y = �j!� ~Jy; in V (4)

under the associated boundary conditions
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y +
rtE
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y
p

= ~U
y
: (5)

Suppose that we can find an~E0 or ~E
y
0 , which satisfies the

aforementioned boundary conditions. If we define~e = ~E � ~E0,
~j = �j!�o ~J then the following functional [3]:

I = h~ey; L̂~ei � h~ey;~ji � h~e;~jyi (6)

can still apply, provided that the assumed known vector~U is
modified to ~U � n̂ � n̂ � rtEn and the local potential method is
employed. Following similar procedures presented in [4], we may
further simplify the functional, yielding

I =
V

1
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(~V � ~Ey + ~V
y � ~E) ds+ j!�0

V

(~j � ~Ey +~j
y � ~E) dv:

(7)

Equation (7) can be verified by using Galerkin’s procedure to
transform the vector-wave equation into the weak integral form
[1]. For the via structure, the incident field can be expressed as
~Ein = ~E0(x; y)e�
 (z�z ) on the plane of incidenceO1. Thus,

~E = ~E
0
t (x; y)e

�
 (z�z ) + �~E0
t (x; y)e


 (z�z )

+ ~E
0
z (x; y)e

�
 (z�z ) � �~E0
z (x; y)e


 (z�z )

= ~E
in + ~E

re (8)

where� is the reflection coefficient. Consequently, on this surface,
we obtain

n̂�r� ~E+
1n̂�n̂� ~E = 2
1n̂�n̂� ~E
in�n̂�n̂�rtEn = ~U0:

(9)

Note that
1 in (8) is the complex propagation constant for the two-
and-one-half-dimensional uniform-line case, which has been obtained
from the precomputation of the two-and-one-half-dimensional edge-
element codes. Comparing (9) with (3), we have


p = 
1

~U =2
1n̂� (n̂� ~E
in): (10)

On O2, the surface through which the wavefront propagates out of
the via structure, we have

~E =T ~E
0(x; y)e�
 (z�z ) = ~E

tr (11)

whereT is the transmission coefficient. OnO2, we also have

n̂�r� ~E + 
2n̂� n̂� ~E = �n̂� n̂�rtEn = ~U0: (12)

Therefore,
p = 
2 and ~U = 0. On other boundary surfaces,
either the boundary conditions of the first or third kind apply. The
adjoint field, which satisfies (4) and (5), onO2 has the form of
~Einy = ~E

y
0 e


 (z�z ): At port 2, we have
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Similar to (9), we find

n̂�r� ~E
y + 
2n̂� n̂� ~E

y

= 2
2n̂� n̂� ~E
iny � n̂� n̂�rtE

y
n = ~U

y
0 : (14)

On O1, the adjoint field is governed by

n̂�r� ~E
y + 
1n̂� n̂� ~E

y = �n̂� n̂�rtE
y
n = ~U

y
0 : (15)

III. EDGE-ELEMENT PROCEDURE

For reasons of simplicity, the isotropic case will be considered. We
shall assume that the same shape functions employed for the primary
fields can also be used for the adjoint fields. For the edge element
with a basic building block, we may express the electrical fields in
each small cell as [4]

~E
e =

12

i=1

~N
e
i E

e
i : (16)

After using the Ritz procedure and grouping together all of the
relationships in the global coordinate system, we arrive at

f[Ze
v ] + 
[Zs

z ] + [Zs
tz ] + [Zs

�tz] + 
[Zs
(�z)] + 
p[Z

g
i ]g[E]

= 2
[Zu
z ][E

in
t ]: (17)

Once (17) has been solved, the distribution of the electrical fields
will be obtained.

IV. EXCESS CAPACITANCE AND INDUCTANCE

Once the distribution of the 3-D electrical field has been de-
termined, the reflection coefficient can be evaluated from (8). For
example, when the system is excited from port 1, we have

� =
0

ds[ ~E � ~E2D � ~E2D � ~E2D]

0

ds ~E2D � ~E2D

z=z

: (18)

Similarly from (11), the transmission coefficient is

T =
0

ds ~E � ~E2D

0

ds ~E2D � ~E2D

z=z

(19)

provided the field is properly normalized [5]. The scattering param-
eters of a two-port system are

S11 = � S21 = T: (20)
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TABLE I

Fig. 1. Via configuration.

The Y -parameters can be found from two-port network theory.
Based on the�-type equivalent circuits, we then have the equivalent
capacitance and inductance

C =
= Y12

!
L =

1

! = (Y11 � Y12)
: (21)

The resistance and the conductance can be found in the same way.
The resistance can be ignored in this equivalent circuit because while
the vias are of fairly small cross section, their vertical height between
layers is also quite small.

V. NUMERICAL EXAMPLES

The nonsymmetric complex sparse system equation (17) was
solved using the Harwell subroutines. Only a few minutes are required
on an IBM RS-6000 computer for each frequency point, when the
total number of unknowns is approximately 3000.

Example 1: Through-hole vias are typically used to connect signal
lines residing on different metal layers in most printed-circuit-board
technologies and in some multichip module (MCM) technologies.
For the circuit design, engineers are concerned about overall signal
integrity on interconnects carrying wide-band signals, and thus wish
to understand the magnitude of the excess inductance and capaci-
tance caused by this via discontinuity. The method described herein
provides the needed parametric values. Note in Table I that the two
reference planes incorporated into the via structure, shown in Fig. 1,
are placed at locationsz1 = �0:07 mm and z2 = 0:07 mm,
respectively. Fig. 2(a) and (b) depicts the top and side view of the

(a)

(b)

Fig. 2. (a) Top and (b) side views of the through-hole via modeled with
finite-edge-element method (FEEM) (all dimensions are in microns).

structure, with all dimensions (in microns) included. The resulting
frequency-dependentS-parameters are listed in Table I, where it can
be seen that the effect of the via of Fig. 1 on the signal integrity
is very minor. Laboratory measurements support this conclusion.
The capacitance values are compared with the finite-difference time-
domain (FDTD) results, with a discrepancy�7%.

Example 2: An air bridge was modeled using the spectral-
domain analysis (SDA) in [6]. We repeated this example using
the newly developed edge-element formulation. Good agreement of
the S-parameters has been obtained in comparison with the SDA.
Due to space limitations, we are not able to include the figure.

VI. CONCLUSIONS

In this paper, we have identified an additional term in the boundary
condition of the third kind for 3-D structures. In conjunction with
the two-dimensional uniform transmission-line results, the newly
developed 3-D formulation can extract from impedance discon-
tinuities the reflected and transmitted waves, and convert them
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into frequency-dependent lumped-circuit parameters. A numerical
example of a through-hole via, typically found in printed circuit
boards and MCM’s, was analyzed. Comparisons with available
published results indicate excellent agreement with this new method.
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